Goede plaatsingen in de divisie statistieken zijn bewijs van de kwaliteit van de spelers in je team. De statistieken tonen de beste spelers volgens bepaalde criteria. De beste spelers op het eind van het seizoen zullen een bonus krijgen in hun populariteit en hun clubs zullen een financiële beloning krijgen van de divisiecommissarissen.
Seizoen:
Land:
Divisie:
Rnk | Naam | Team | GP | Min | 2FG% | 3FG% | FT% | Reb | A | TO | ST | Blk | PF | Pts | +/- |
1 | ![]() | ![]() |
11 | 245 | 66.7 | 60 | 85.7 | 97 | 10 | 13 | 20 | 8 | 29 | 247 | 393 |
2 | ![]() | ![]() |
6 | 229 | 60.7 | 46.9 | 79.2 | 22 | 34 | 4 | 13 | 4 | 9 | 201 | 139 |
3 | ![]() | ![]() |
11 | 246 | 63.8 | 62.5 | 72.7 | 51 | 18 | 13 | 16 | 6 | 37 | 201 | 148 |
4 | ![]() | ![]() |
9 | 204 | 55.4 | 50.7 | 89.7 | 27 | 53 | 12 | 8 | 2 | 5 | 190 | 287 |
5 | ![]() | ![]() |
11 | 259 | 59.8 | 56 | 88.9 | 37 | 32 | 12 | 11 | 7 | 23 | 190 | 392 |
6 | ![]() | ![]() |
10 | 264 | 56.7 | 38.5 | 75.9 | 33 | 20 | 14 | 15 | 7 | 16 | 170 | 190 |
7 | ![]() | ![]() |
11 | 203 | 58.1 | 0 | 67.7 | 71 | 11 | 7 | 17 | 14 | 29 | 143 | 125 |
8 | ![]() | ![]() |
9 | 164 | 77.1 | 100 | 52.9 | 62 | 12 | 7 | 17 | 4 | 31 | 140 | 172 |
9 | ![]() | ![]() |
7 | 136 | 66.2 | 66.7 | 76.5 | 21 | 24 | 3 | 18 | 6 | 9 | 137 | 87 |
10 | ![]() | ![]() |
11 | 247 | 65.5 | 42.9 | 65 | 40 | 21 | 17 | 13 | 22 | 33 | 136 | 382 |
11 | ![]() | ![]() |
11 | 304 | 45.3 | 34.6 | 69.2 | 10 | 68 | 23 | 17 | 1 | 11 | 130 | 161 |
12 | ![]() | ![]() |
3 | 120 | 57.7 | 51.9 | 81.8 | 14 | 11 | 19 | 1 | 3 | 9 | 123 | -116 |
13 | ![]() | ![]() |
9 | 224 | 45.8 | 44.7 | 66.7 | 24 | 46 | 10 | 12 | 1 | 12 | 113 | 211 |
14 | ![]() ![]() | ![]() |
6 | 202 | 74.6 | 0 | 75 | 33 | 37 | 8 | 14 | 9 | 19 | 112 | 131 |
15 | ![]() | ![]() |
11 | 279 | 50 | 50 | 76.2 | 29 | 73 | 30 | 9 | 3 | 7 | 110 | 352 |
16 | ![]() ![]() | ![]() |
10 | 194 | 56.1 | 40 | 44.4 | 39 | 14 | 13 | 14 | 8 | 24 | 110 | 100 |
17 | ![]() | ![]() |
5 | 125 | 40.9 | 49 | 61.5 | 21 | 22 | 17 | 4 | 5 | 11 | 101 | 34 |
18 | ![]() ![]() | ![]() |
4 | 125 | 50 | 34.9 | 75 | 30 | 8 | 1 | 3 | 0 | 17 | 92 | 35 |
19 | ![]() | ![]() |
4 | 147 | 59.4 | 37.9 | 100 | 14 | 7 | 15 | 6 | 0 | 14 | 79 | 13 |
20 | ![]() | ![]() |
6 | 147 | 54.9 | 40 | 66.7 | 20 | 8 | 7 | 11 | 5 | 23 | 76 | 99 |
21 | ![]() | ![]() |
6 | 229 | 39.3 | 37.1 | 46.2 | 10 | 35 | 12 | 12 | 2 | 9 | 67 | 139 |
22 | ![]() | ![]() |
7 | 142 | 44.2 | 27.3 | 62.5 | 49 | 0 | 14 | 3 | 4 | 18 | 65 | -80 |
23 | ![]() | ![]() |
4 | 92 | 51.2 | 30 | 61.1 | 28 | 4 | 5 | 6 | 1 | 20 | 64 | 54 |
24 | ![]() | ![]() |
11 | 195 | 49 | 0 | 71.4 | 53 | 7 | 25 | 4 | 5 | 28 | 63 | -248 |
25 | ![]() | ![]() |
4 | 108 | 61.5 | 57.7 | 100 | 10 | 3 | 11 | 0 | 2 | 8 | 63 | -49 |
26 | ![]() | ![]() |
4 | 100 | 66.7 | 46.2 | 100 | 22 | 10 | 7 | 4 | 4 | 17 | 58 | -3 |
27 | ![]() | ![]() |
9 | 181 | 42.9 | 40 | 52.9 | 19 | 7 | 5 | 7 | 2 | 22 | 57 | -247 |
28 | ![]() | ![]() |
3 | 89 | 51.6 | 36.4 | 90 | 10 | 1 | 8 | 2 | 1 | 10 | 53 | -129 |
29 | ![]() | ![]() |
6 | 121 | 33.3 | 40 | 92.9 | 15 | 6 | 11 | 1 | 2 | 18 | 53 | -34 |
30 | ![]() | ![]() |
11 | 193 | 52.9 | 33.3 | 66.7 | 21 | 13 | 22 | 3 | 6 | 14 | 51 | -237 |
31 | ![]() | ![]() |
4 | 105 | 51.4 | 37.5 | 55.6 | 5 | 6 | 10 | 2 | 4 | 13 | 50 | -76 |
32 | ![]() | ![]() |
6 | 102 | 50 | 25 | 62.5 | 39 | 3 | 12 | 9 | 6 | 16 | 49 | -37 |
33 | ![]() | ![]() |
6 | 111 | 42.9 | 52.9 | 69.2 | 13 | 6 | 9 | 8 | 2 | 12 | 48 | -176 |
34 | ![]() | ![]() |
7 | 138 | 53.1 | 10 | 78.6 | 41 | 8 | 5 | 5 | 4 | 24 | 48 | -31 |
35 | ![]() | ![]() |
3 | 50 | 43.8 | 45 | 54.5 | 9 | 7 | 4 | 3 | 1 | 4 | 47 | -14 |
36 | ![]() | ![]() |
6 | 169 | 41.7 | 24.1 | 29.4 | 20 | 36 | 15 | 6 | 1 | 5 | 46 | -59 |
37 | ![]() | ![]() |
8 | 161 | 33.3 | 29.4 | 88.2 | 9 | 18 | 15 | 5 | 2 | 15 | 46 | -207 |
38 | ![]() | ![]() |
3 | 77 | 66.7 | 0 | 88.9 | 10 | 9 | 6 | 2 | 0 | 7 | 44 | -55 |
39 | ![]() | ![]() |
3 | 120 | 51.7 | 0 | 92.9 | 9 | 11 | 12 | 3 | 1 | 11 | 43 | -116 |
40 | ![]() | ![]() |
3 | 65 | 42.9 | 60 | 69.2 | 20 | 4 | 7 | 4 | 0 | 7 | 42 | -72 |
41 | ![]() | ![]() |
2 | 69 | 72.2 | 100 | 87.5 | 9 | 8 | 1 | 7 | 1 | 3 | 39 | 134 |
42 | ![]() | ![]() |
3 | 94 | 65.2 | 10 | 75 | 29 | 5 | 7 | 3 | 3 | 14 | 39 | -84 |
43 | ![]() | ![]() |
3 | 100 | 35 | 35 | 100 | 8 | 10 | 13 | 3 | 2 | 15 | 38 | -167 |
44 | ![]() | ![]() |
5 | 65 | 87.5 | 53.3 | 0 | 8 | 12 | 5 | 3 | 0 | 4 | 38 | 21 |
45 | ![]() | ![]() |
4 | 131 | 31.3 | 50 | 92.9 | 20 | 7 | 7 | 3 | 6 | 17 | 36 | 13 |
46 | ![]() | ![]() |
5 | 72 | 46.7 | 40 | 100 | 6 | 9 | 7 | 1 | 0 | 9 | 35 | -59 |
47 | ![]() | ![]() |
4 | 38 | 61.9 | 100 | 60 | 11 | 1 | 1 | 3 | 0 | 10 | 35 | 25 |
48 | ![]() | ![]() |
4 | 102 | 50 | 37.5 | 55.6 | 19 | 10 | 7 | 0 | 2 | 10 | 34 | 21 |
49 | ![]() | ![]() |
4 | 160 | 53.8 | 28.6 | 73.3 | 11 | 33 | 11 | 7 | 1 | 14 | 31 | -15 |
50 | ![]() | ![]() |
3 | 57 | 50 | 26.3 | 53.8 | 10 | 4 | 1 | 1 | 1 | 7 | 30 | -24 |