Goede plaatsingen in de divisie statistieken zijn bewijs van de kwaliteit van de spelers in je team. De statistieken tonen de beste spelers volgens bepaalde criteria. De beste spelers op het eind van het seizoen zullen een bonus krijgen in hun populariteit en hun clubs zullen een financiële beloning krijgen van de divisiecommissarissen.
Seizoen:
Land:
Divisie:
Rnk | Naam | Team | GP | Min | 2FG% | 3FG% | FT% | Reb | A | TO | ST | Blk | PF | Pts | +/- |
1 | ![]() | ![]() |
11 | 351 | 61.4 | 39.2 | 76.6 | 29 | 52 | 17 | 20 | 1 | 14 | 242 | 291 |
2 | ![]() | ![]() |
11 | 327 | 60.4 | 42.3 | 76.5 | 41 | 40 | 11 | 9 | 1 | 24 | 202 | 298 |
3 | ![]() | ![]() |
11 | 211 | 59.3 | 20 | 71.8 | 73 | 8 | 11 | 16 | 10 | 39 | 159 | 168 |
4 | ![]() | ![]() |
11 | 327 | 59.6 | 33.3 | 82.6 | 37 | 26 | 19 | 7 | 6 | 22 | 158 | 84 |
5 | ![]() | ![]() |
11 | 212 | 64.7 | 41.7 | 52.6 | 74 | 9 | 12 | 17 | 5 | 39 | 145 | 155 |
6 | ![]() | ![]() |
11 | 234 | 61.5 | 80 | 52.2 | 78 | 5 | 13 | 8 | 6 | 37 | 142 | 16 |
7 | ![]() | ![]() |
11 | 221 | 62.7 | 50 | 63.2 | 70 | 11 | 8 | 16 | 6 | 44 | 139 | 210 |
8 | ![]() | ![]() |
6 | 212 | 34.5 | 52.3 | 72.2 | 23 | 18 | 26 | 2 | 0 | 8 | 135 | -112 |
9 | ![]() | ![]() |
11 | 317 | 51.3 | 46.9 | 82.6 | 20 | 47 | 25 | 8 | 2 | 10 | 128 | 155 |
10 | ![]() | ![]() |
11 | 207 | 60.3 | 50 | 70.6 | 32 | 17 | 6 | 7 | 4 | 30 | 121 | 172 |
11 | ![]() | ![]() |
11 | 253 | 58.1 | 10 | 66.7 | 54 | 24 | 9 | 14 | 9 | 39 | 121 | 194 |
12 | ![]() | ![]() |
11 | 354 | 63.2 | 50 | 71.4 | 21 | 72 | 19 | 15 | 1 | 13 | 117 | 134 |
13 | ![]() | ![]() |
6 | 240 | 34.2 | 45.8 | 75 | 17 | 22 | 17 | 8 | 0 | 10 | 107 | 30 |
14 | ![]() | ![]() |
11 | 238 | 66.7 | 20 | 84.6 | 25 | 16 | 13 | 13 | 6 | 36 | 105 | 12 |
15 | ![]() | ![]() |
11 | 351 | 41.2 | 51.6 | 84.4 | 20 | 59 | 11 | 15 | 6 | 14 | 103 | 291 |
16 | ![]() | ![]() |
6 | 126 | 67.9 | 66.7 | 85.7 | 20 | 6 | 11 | 6 | 2 | 13 | 90 | 43 |
17 | ![]() | ![]() |
6 | 203 | 58.1 | 52 | 82.4 | 22 | 18 | 13 | 5 | 0 | 17 | 89 | -115 |
18 | ![]() | ![]() |
6 | 114 | 63.3 | 57.1 | 61.9 | 18 | 18 | 2 | 4 | 2 | 8 | 87 | -13 |
19 | ![]() | ![]() |
11 | 192 | 58.6 | 25 | 63.6 | 39 | 14 | 6 | 9 | 11 | 25 | 85 | 194 |
20 | ![]() | ![]() |
6 | 218 | 56 | 27.8 | 45.5 | 12 | 41 | 12 | 4 | 0 | 11 | 83 | -121 |
21 | ![]() | ![]() |
3 | 84 | 50 | 65 | 68.4 | 13 | 15 | 4 | 5 | 1 | 2 | 80 | -20 |
22 | ![]() | ![]() |
6 | 168 | 62.8 | 33.3 | 78.6 | 42 | 15 | 7 | 4 | 5 | 14 | 77 | 23 |
23 | ![]() | ![]() |
6 | 240 | 52.6 | 42.9 | 81.3 | 15 | 36 | 20 | 13 | 2 | 6 | 69 | 30 |
24 | ![]() | ![]() |
11 | 118 | 54.8 | 33.3 | 75 | 13 | 9 | 7 | 6 | 1 | 12 | 64 | 90 |
25 | ![]() | ![]() |
6 | 123 | 61.1 | 33.3 | 68.8 | 18 | 10 | 5 | 2 | 5 | 21 | 64 | 46 |
26 | ![]() | ![]() |
11 | 94 | 40 | 42.9 | 85.7 | 7 | 13 | 3 | 3 | 3 | 2 | 64 | 97 |
27 | ![]() | ![]() |
6 | 150 | 52.3 | 33.3 | 28.6 | 44 | 7 | 8 | 4 | 4 | 29 | 62 | -63 |
28 | ![]() | ![]() |
11 | 128 | 47.4 | 54.2 | 100 | 10 | 20 | 9 | 4 | 2 | 4 | 62 | 29 |
29 | ![]() | ![]() |
6 | 164 | 56.3 | 42.9 | 34.8 | 24 | 8 | 18 | 5 | 6 | 28 | 62 | -55 |
30 | ![]() | ![]() |
3 | 101 | 45.8 | 37.5 | 100 | 9 | 6 | 15 | 0 | 2 | 9 | 57 | -151 |
31 | ![]() | ![]() |
6 | 72 | 65 | 13.3 | 87.5 | 13 | 13 | 3 | 2 | 0 | 2 | 53 | 7 |
32 | ![]() | ![]() |
6 | 118 | 60 | 62.5 | 60 | 18 | 19 | 6 | 7 | 1 | 9 | 51 | 100 |
33 | ![]() | ![]() |
11 | 94 | 70.6 | 35.7 | 47.1 | 11 | 17 | 1 | 8 | 0 | 4 | 47 | 97 |
34 | ![]() | ![]() |
3 | 62 | 80 | 66.7 | 25 | 3 | 3 | 5 | 3 | 2 | 12 | 47 | -38 |
35 | ![]() | ![]() |
3 | 84 | 27.3 | 45 | 88.9 | 2 | 9 | 6 | 2 | 0 | 6 | 41 | -20 |
36 | ![]() | ![]() |
3 | 71 | 42.9 | 100 | 87.5 | 23 | 2 | 2 | 2 | 1 | 10 | 40 | -24 |
37 | ![]() | ![]() |
6 | 123 | 50 | 25 | 68.8 | 42 | 6 | 14 | 5 | 3 | 24 | 40 | -33 |
38 | ![]() | ![]() |
3 | 104 | 37.5 | 50 | 55.6 | 25 | 2 | 12 | 1 | 1 | 7 | 38 | -163 |
39 | ![]() | ![]() |
6 | 59 | 73.3 | 33.3 | 100 | 10 | 4 | 7 | 0 | 2 | 10 | 34 | -19 |
40 | ![]() | ![]() |
3 | 71 | 54.2 | 33.3 | 80 | 19 | 1 | 3 | 0 | 1 | 12 | 33 | -82 |
41 | ![]() | ![]() |
6 | 117 | 52.2 | 66.7 | 37.5 | 30 | 3 | 7 | 4 | 1 | 15 | 33 | -16 |
42 | ![]() | ![]() |
3 | 83 | 36.4 | 0 | 72.7 | 18 | 4 | 4 | 1 | 2 | 10 | 32 | -91 |
43 | ![]() | ![]() |
3 | 57 | 57.1 | 50 | 50 | 6 | 3 | 5 | 1 | 1 | 11 | 31 | -68 |
44 | ![]() | ![]() |
3 | 36 | 50 | 58.3 | 66.7 | 4 | 4 | 3 | 2 | 3 | 2 | 31 | -48 |
45 | ![]() | ![]() |
3 | 58 | 53.8 | 18.2 | 81.8 | 5 | 5 | 5 | 2 | 1 | 5 | 29 | -41 |
46 | ![]() | ![]() |
3 | 84 | 16.7 | 58.3 | 66.7 | 0 | 8 | 5 | 3 | 0 | 4 | 27 | -79 |
47 | ![]() | ![]() |
3 | 62 | 37.5 | 35.3 | 66.7 | 4 | 4 | 5 | 3 | 0 | 2 | 26 | -67 |
48 | ![]() | ![]() |
3 | 58 | 100 | 57.1 | 0 | 5 | 1 | 7 | 2 | 0 | 3 | 26 | -41 |
49 | ![]() | ![]() |
3 | 62 | 44.4 | 0 | 90 | 8 | 1 | 13 | 0 | 0 | 14 | 25 | -117 |
50 | ![]() | ![]() |
3 | 53 | 64.3 | 16.7 | 66.7 | 18 | 1 | 10 | 0 | 3 | 15 | 25 | -76 |